Timestamp Min#
Check: timestamp-min-check
Purpose: Checks whether values in the specified timestamp columns are greater than a defined minimum timestamp (min_value). A row fails the check if any of the selected columns contains a timestamp before the configured min_value.
Use the inclusive parameter to control boundary behavior:
inclusive = False (default):
value > min_value
inclusive = True:
value >= min_value
Python Configuration#
from sparkdq.checks import TimestampMinCheckConfig
from sparkdq.core import Severity
TimestampMinCheckConfig(
check_id="minimum_allowed_event_time",
columns=["event_time"],
min_value="2020-01-01 00:00:00",
inclusive=True,
severity=Severity.CRITICAL
)
Declarative Configuration#
- check: timestamp-min-check
check-id: minimum_allowed_event_time
columns:
- event_time
min-value: "2020-01-01 00:00:00"
inclusive: true
severity: critical
Typical Use Cases#
✅ Ensure that log entries or event timestamps are not older than a specified start time.
✅ Validate that data collection started after a certain system deployment or go-live timestamp.
✅ Check that sensor readings or measurement data are within the valid observation period.
✅ Prevent processing of outdated records outside the defined operational timeframe.