Date Max#
Check: date-max-check
Purpose: Checks whether values in the specified date columns are less than a defined maximum date. A row fails the check if any of the selected columns contains a date after the configured max_value.
You can control inclusivity using the inclusive parameter:
inclusive = False (default):
value < max_value
inclusive = True:
value <= max_value
Python Configuration#
from sparkdq.checks import DateMaxCheckConfig
from sparkdq.core import Severity
DateMaxCheckConfig(
check_id="maximum_allowed_record_date",
columns=["record_date"],
max_value="2023-12-31",
inclusive=True,
severity=Severity.CRITICAL
)
Declarative Configuration#
- check: date-max-check
check-id: maximum_allowed_record_date
columns:
- record_date
max-value: "2023-12-31"
inclusive: true
severity: critical
Typical Use Cases#
✅ Ensure that event or transaction dates do not lie in the future.
✅ Validate that timestamps for data entries stay within the expected reporting period.
✅ Check that measurement dates are not beyond a configured cutoff date (e.g., end of fiscal year).
✅ Prevent accidental inclusion of incorrectly future-dated records due to data entry errors.