Numeric Max#
Check: numeric-max-check
Purpose: Checks whether values in the specified numeric columns are less than a defined maximum value (max_value). A row fails the check if any of the selected columns contains a value greater than the maximum, or equal to it if inclusive=False.
You can control inclusivity with the inclusive parameter:
inclusive = False (default):
value < max_value
inclusive = True:
value <= max_value
Python Configuration#
from sparkdq.checks import NumericMaxCheckConfig
from sparkdq.core import Severity
NumericMaxCheckConfig(
check_id="maximum_allowed_discount",
columns=["discount"],
max_value=100.0,
inclusive=True,
severity=Severity.CRITICAL
)
Declarative Configuration#
- check: numeric-max-check
check-id: maximum_allowed_discount
columns:
- discount
max-value: 100.0
inclusive: true
severity: critical
Typical Use Cases#
✅ Ensure that prices, quantities, or measurements do not exceed defined maximum limits.
✅ Validate sensor readings against physical upper thresholds.
✅ Check maximum allowed values for KPIs, metrics, or score calculations (e.g., percentages ≤ 100).
✅ Detect outliers or erroneous data entries that exceed expected ranges.