Numeric Min#
Check: numeric-min-check
Purpose: Checks whether values in the specified numeric columns are strictly greater than a defined minimum value (min_value). A row fails the check if any of the selected columns contains a value less than the minimum, or equal to it if inclusive=False.
You can control inclusivity with the inclusive parameter:
inclusive = False (default):
value > min_value
inclusive = True:
value >= min_value
Python Configuration#
from sparkdq.checks import NumericMinCheckConfig
from sparkdq.core import Severity
NumericMinCheckConfig(
check_id="minimum_allowed_price",
columns=["price", "discount"],
min_value=0.0,
inclusive=True,
severity=Severity.CRITICAL
)
Declarative Configuration#
- check: numeric-min-check
check-id: minimum_allowed_price
columns:
- price
- discount
min-value: 0.0
inclusive: true
severity: critical
Typical Use Cases#
✅ Ensure that sales amounts are not negative.
✅ Validate sensor readings against physical minimum thresholds.
✅ Check minimum allowed values for KPIs or metrics.