Timestamp Max#
Check: timestamp-max-check
Purpose: Checks whether values in the specified timestamp columns are less than a defined maximum timestamp (max_value). A row fails the check if any of the selected columns contains a timestamp after the configured max_value.
Use the inclusive parameter to control boundary behavior:
inclusive = False (default):
value < max_value
inclusive = True:
value <= max_value
Python Configuration#
from sparkdq.checks import TimestampMaxCheckConfig
from sparkdq.core import Severity
TimestampMaxCheckConfig(
check_id="maximum_allowed_event_time",
columns=["event_time"],
max_value="2023-12-31 23:59:59",
inclusive=True,
severity=Severity.CRITICAL
)
Declarative Configuration#
- check: timestamp-max-check
check-id: maximum_allowed_event_time
columns:
- event_time
max-value: "2023-12-31 23:59:59"
inclusive: true
severity: critical
Typical Use Cases#
✅ Ensure that log entries or event timestamps do not lie in the future.
✅ Validate that data processing only includes records up to a specific cutoff time.
✅ Check that sensor data or measurements were captured within the allowed timeframe.
✅ Prevent the inclusion of incorrect future-dated records caused by system errors.