Timestamp Max#

Check: timestamp-max-check

Purpose: Checks whether values in the specified timestamp columns are less than a defined maximum timestamp (max_value). A row fails the check if any of the selected columns contains a timestamp after the configured max_value.

Use the inclusive parameter to control boundary behavior:

  • inclusive = False (default): value < max_value

  • inclusive = True: value <= max_value

Python Configuration#

from sparkdq.checks import TimestampMaxCheckConfig
from sparkdq.core import Severity

TimestampMaxCheckConfig(
    check_id="maximum_allowed_event_time",
    columns=["event_time"],
    max_value="2023-12-31 23:59:59",
    inclusive=True,
    severity=Severity.CRITICAL
)

Declarative Configuration#

- check: timestamp-max-check
  check-id: maximum_allowed_event_time
  columns:
    - event_time
  max-value: "2023-12-31 23:59:59"
  inclusive: true
  severity: critical

Typical Use Cases#

  • ✅ Ensure that log entries or event timestamps do not lie in the future.

  • ✅ Validate that data processing only includes records up to a specific cutoff time.

  • ✅ Check that sensor data or measurements were captured within the allowed timeframe.

  • ✅ Prevent the inclusion of incorrect future-dated records caused by system errors.