Columns Are Complete#

Check: columns-are-complete-check

Purpose: Ensures that all specified columns are fully populated (i.e. contain no null values). If any null values are found in one of the columns, the entire dataset is considered invalid.

Python Configuration#

from sparkdq.checks import ColumnsAreCompleteCheckConfig
from sparkdq.core import Severity

ColumnsAreCompleteCheckConfig(
    check_id="required_fields_check",
    columns=["trip_id", "pickup_time"],
    severity=Severity.CRITICAL
)

Declarative Configuration#

- check: columns-are-complete-check
  check-id: required_fields_check
  columns:
    - trip_id
    - pickup_time
  severity: critical

Typical Use Cases#

  • ✅ Enforce critical business fields to be complete (e.g. primary keys, timestamps).

  • ✅ Detect corruption or data loss caused by ETL errors or schema mismatches.

  • ✅ Ensure key fields required for downstream processing or analytics are intact.

  • ✅ Use as a hard fail condition to quarantine incomplete datasets early in the pipeline.